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Wavelet Representation of Contour Sets

Martin Bertraml’2 Daniel E. Laney3 Mark A. Duchaineau3 Charles D. Hansenl Bemd Hamann4
Kenneth I. Joy4

Abstract: We present a new wavelet compression and mul-
tiresolution modeling approach for sets of contours (level sets).
In contrast to previous wavelet schemes, our algorithm creates a
parametrization of a scalar field induced by its contoum and com-
pactly stores this parametrization rather than function vahres sasn-
pled on a regular grid. Our representation is based on hierarchical
polygon meshes with subdivision connectivity whose vertices are
transformed into wavelet coefficients. From this sparse set of co-
efficients, every set of contours can be efficiently reconstructed at
multiple levels of resolution. When applying lossy compression,
introducing high quantization errors, our method preserves contour
topology, in contrast to compression methods applied to the cor-
responding field function. We provide numerical results for scatar
fields defined on planar domains. Our approach generalizes to vol-
umetric domains, time-varying contours, and level sets of vector
fields.

CR Categories and Subject Descriptors: E.4 [Coding and In-
formation Theory]: Data Compaction and Compression; G. 1.2 [Nu-
mericat Analysis]: Approximation – Approximation of Surfaces
and Contours.

Additional Keywords: Contours, Geometry Compression, Iso-
surfaces, Level Sets, Multiresolution Methods, Wavelets.

1 Introduction

Scientific visualization methods help us to explore and understand
the nature of vast amounts of digital data produced by numerical
simulations on supercomputers or by imaging technology like com-
puter tomography. Vkualizing scalar fields via exploration of their
isosurface behavior is one of the most powerful ways to gain in-
sight into a physical phenomenon. Our approach is driven by the
need to explore very large scalar fields interactively by browsing
through their continuous space of contours. In the past, multires-
olution methods were developed for the modeling, rendering, and
exploration of complicated two-manifold data, e.g., large-scale iso-
surfaces [1]. In order to explore the entire contour space of a scalar
field more powerful methods are required, as entire families of con-
tours have to be extracted, represented, and rendered. The approach
we are presenting here is driven by such considerations. We intro-
duce a new framework for the multiresohrtion approximation of a
multitude of contours defined by a single scalar field. This frame-
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work promises to have significant impact on state-of-the-art visual-
ization and exploration of truly massive, tera-scale scalar field data.

Visualization methods often rely on continuous geometric mod-
els representing the relevant topological and geometric features of
a data set. Multiresohrtion modeling techniques, like wavelet trans-
forms [3, 16], provide efficient progressive access to local geome-
try. Wavelet transform coupled with progressive coders for quan-
tized coefficients are among the most efficient schemes for com-
pression, error-driven querying, and progressive transmission of
data defined on regularly gridded domains [15, 18]. When visu-
alizing derived quantities or features, such as contours, these need
to be extxactedfrom a locally reconstructed geometric model. This
extraction process can be very expensive, especially in the case of
volume data, since an unknown surface topology needs to be recov-
ered.

Standard wavelet compression algorithms [18] transform a func-
tion into wavelet coefficients of expectedly small absolute vatues.
These coefficients are quantized (rounded to integers) or thresh-
olded (selected by magnitude of absolute values) and compressed
by a progressive coding scheme like zero trees [15]. When ex-
tracting contours from compressed data altered by quantization er-
rors, there exists no guarantee of obtaining topologicafly correct
contours. When reconstructing data from thresholded or quantized
wavelet coefficients, for example, the resulting contours may even
have additional components enclosing local extrema of the recon-
struction error, see Figures 1 (a) and (d).

The wavelet approach presented here overcomes this problem
by compressing a parametrization of a field function that is induced
by its contours, rather than compressing a field function directly.
Our approach also simplifies the topology of represented contours.
However, this simplification is performed in an initial step of our
algorithm, where a finite set of selected contours, catled base con-
tours, is extracted. All other contours represented by our method
have the topology of a corresponding base contour of the closest
isovalue. Since the set of base contours can be chosen arbitrarily,
our method introduces a predictable topological error reducing the
quantity of topological changes that need to be stored. Compared
to conventional compression methods for scalar fields, our method
requires some additional space for storing contour topology. How-
ever, our method preserves the prescribed contour topology at every
level of resolution and provides efficient access to the geometry, see
Figures 1 (b+c) and (e+f).

Starting with the set of base contours, we construct a coarse mesh
structure, the base mesh, covering the domain of the underlying
field function. This base mesh is recursively subdivided, and its ver-
tices are projected onto intermediate contours. The resulting adap-
tive mesh structure is equivalent to a subdivision surface/volume
with displacement of vertices correcting the geometry at finer levels
of detail. Our atgonthm represents these displacements compactly
in the form of sparse wavelet coefficients. The contours produced
by our subdivision process are either linear or cubic polynomials.

We represent a scalar field by a continuous parametrization of
its domain that is defined by a subdivision surfaceholume. This
parametrization is a function mapping a manifold into Euclidean
space. In the case of planar contours, our manifold domain has one
global parameter specifying the isovafue and one local parameter
traversing the corresponding contour. (In the case of isosurfaces of



Figure 1: Contours of a slice taken from a volume data set (Rayleigh-Taylor instability simulation). (a) Contours extracted from full resolution
slice (64 x 64 samples); (b+c) contours represented by our m-eth;d at different Ieveis of resolution using a bilinear wavelet transform, based
on 2631 and 656 coefficients, resDectivelv: (d) contours extracted from a wavelet commission of the slice usirw a bicubic wavelet and 612
coefficients; (e+f) same as (b+c) &ing a ~icubic wavelet.

trivariate functions, our manifold has one parameter for the isovahre
and two local parameters traversing an isosurface.) The coarsest
level of resolution is defined by a base mesh providing both, the
manifold topology and a coarse parametrization obtained by recur-
sive subdivision. During the subdivision process, geometric detail
can be expanded from wavelet coefficients resulting in representa-
tions at higher level of resolution.

Our representation of contour sets is equivalent to a representa-
tion of the underlying field function, but it provides rapid access
to every contour at multiple levels of resolution. This is a highly
desirable property for real-time visualization of contours, allowing
for interactively changing isovahses and rendering multiple trans-
parent isosurfaces at once. Our representation provides additional
flexibility for algorithms processing contours with the goal of im-
proving the underlying field function. For example, constrained
faii-ing of all contours of a field function is a non-trivial operation
that becomes fairly simple when using our approach.

2 Related Work

Multiresolution contouring schemes extract isosurfaces from hier-
archical scalar field representations providing multiple levels of de-
tail. Weber ec al. [19] present an efficient construction method for
crack-free isosrsrfacesfrom adaptively refined hexahedral domains.
A similar approach using a hierarchlcat octree structure for interac-

tive view-dependent contouring is presented by Westerrnamr ef al.
[20]. A real-time rendering approach for multiple transparent iso-
snrfaces reconstructed from a tetrahedral grid hierarchy is described
by Gersmer [4].

Wood et al. [21] use a surface wavefront propagation method for
constructing a coarse base mesh approximating an isosurface with
correct topology. Their approach provides a sern-regrdar triangu-
lar subdivision hierarchy of an isosurface that is useful for wavelet
compression. In previous work, we have constructed quadrilateral
base meshes with subdivision hierarchy that were used for wavelet
compression of isosurfaces [1]. Our wavelet construction for sub-
division surfaces [2] generalizes to higher dimensions, e.g., vol-
umes of manifold topology, like level sets and time-varying sur-
faces. Wavelet constructions for subdivision surfaces were initially
described by Lounsbery et al. [8, 16].

When using wavelet approaches for geometry compression [6],
it becomes important to construct smooth surface pararnetrizations
by improving the regularity of control meshes. For triangle meshes,
such regular parametrizations are constructed by the MAPS algo-
rihn described by Lee et al. [7]. Similar algorithms need to be
developed for pseudo-regular meshing of three-dimensional level
sets. A multiresolution approach for matching contours defined
on different cutting planes is presented by Meyers [10]. Efficient
meshing algorithms for level sets are described by Sethian [14].

To our knowledge, previous methods have not attempted to re-
pararnetrize sets of contours for the purpose of wavelet compres-



sion. Hence, our general approach is innovative, combining indi-
vidual techniques from different fields, such as contour extraction,
mesh generation, and subdivision surface wavelets.

3 Adaptively Representing Contour Sets

This section describes our novel multiresolution approach for sets
of contours. We describe our rdgorithm in the context of bivariate
scalar fields and provide extensions to volumetric domains, time-
varying contour’s,and level sets.

3.1 Overview of the Algorithm

Our algorithm first constructs a coarse base mesh induced by certain
base contours. This mesh is then regularly subdivided, and the new
vertices are projected onto intermediate contours Finally, we use a
wavelet transform for compression and multiresolution modeling of
this mesh structure, defining smooth sets of contours by recursive
subdivision. Our afgorithm consists of the following steps that are
illustrated in Color Plates (a–f):

1.

2.

3.

4.

5.

6.

3.2

Extraction of a prescribed set of base contorm, using, for ex-
ample, uniformly distributed isolevels. This set of contours
defines the topology of all intermediate contours represented
by our scheme.

Sampling base verfkes distributed uniformly with respect to
arc lengths from the extracted base contours. These vertices
will represent the coarsest level of detail for our parametriza-
tion. Hence, the set of base contours selected in step 1 should
not be too dense.

Constructing links between base vertices on adjacent base
contours and relaxing these links by moving the base points
on their corresponding contours.

FWing the space between adjacent base contours and their
links with convex polygons that have low numbers of edges.
The resulting base mesh serves as coarsest level of detail,
defining a smooth parametrization of contours when recur-
sively subdivided (using, for example, Catmull-Clark subdi-
vision [9]).

Regular subdivision of the base mesh by inserting new ver-
tices at the cerrtroid of every polygon and in the middle of ev-
ery edge. The vertices obtained by subdivision are connected
to define a quadrilateral, recursively refined mesh structure.
Every vertex is associated with a certain isovafue, such that
certain edges of the mesh approximate contours of the scalar
field. After every subdivision step, the vertices are projected
onto associated contours. This subdivision process terminates
at a resolution slightly finer than the grid resolution of the un-
derlying field function.

Subdivision-surface wavelets [1, 2] are used to generate a hi-
erarchy of continuous paramehizations. The differences be-
tween individual levels of detail are compactly represented by
wavelet coefficients. Data compression can be achieved by
thresholding or by encoding quantized coefficients [11, 15].

Constructing Base Meshes

As a first step we extract a finite set of base contours using a strm-
dard approach. The corresponding isovafues can be uniformly dis-
tributed or they can be more densely sampled in certain regions of

0“0”0
Figure 2: Dyadic refinement of a closed and an open contour com-
ponent

interest. Then we define base vertices by re-sampling the base con-
tours at approximately equidistant intervals of arc length A. The
value of A depends on the number ns of dyadic refinement levels,
see Figure 2, that we will compute and on the finest sampling dis-
tance 6, which should be slightly smaller than the edge length of
the regular grid defining the field function. Hence, we use

A = 2“”IS. (3.1)

All boundary points of contours need to be base vertices, such that
the base contours can be completely generated by dyadic refine-
ment. Additionally, we require every contour component to have at
least three base vertices, to avoid degenerate base polygons.

:@”c?
Figure 3: Constructing links between contours C. and cb by fol-
lowing the gradient starting at base vertices. Some vertices cannot
be linked due to field regions of zero gradient.

The next task is to fill the space between every adjacent pair of
base contours, say C. and Cb, with convex polygons. Therefore,
it is desired to connect matching pairs of base vertices from both
contours, which will improve the fairness of our final parametriza-
tion. We use Newton-iteration to propagate the base vertices of C.
onto the contour cb. In each step of this iteration, the movement
of a vertex is restricted to a maximal distance of J, to avoid diver-
gence due to shallow gradients. Some vertices will not converge to
the contour Cb, since they may get stuck at local extrema or zero-
gradient areas, and the iteration must terminate after a prescribed
number of steps. Those vertices that converge to contour cb are
linked to the closest base point on cb and their initial position on
contour Ca is restored. To find all possible links, this step of the
algorithm is repeated with the vertices of C& iterating towards con-
tour C@,see Figure 3. Base vertices located on the boundary of the
data set are simply connected by traversing this boundary.

The length of the individual links between every pair of base
vertices is minimized by an iterative procedure, allowing the base
vertices to move a certain distance rdong their corresponding con-
tours, see Figure 4. Here, we restrict the maximal displacement
of a vertex to the value $, to avoid coincidence of adjacent base
vertices. This step is necessary to improve smoothness of the final
parametrization and to avoid intersections of polygon strips defined
by the base vertices of every contour component. Isolated compo-



Figure 4: Relaxing a link between base vertices on contours C.
and Cb by dkplacing these vertices along their contours.

Figure 5: Splitting a non-convex polygon. Left: invalid spli~ right:
correct split.

nents, “islands”, are connected by one additional link to the closest
base vertex on its surrounding contour component.

The mesh structure resulting from this procedure already defines
a set of closed polygons covering the scalar field domain. However,
some polygons may still be very large and non-convex and need
to be subdivided further. Additionally, we need to represent these
polygons explicitly. For this purpose, we traverse every polygon
in counter-clockwise orientation of edges and record the participat-
ing base vertices. We use every base vertex as a starting point for
constmrcting a potential polygon. Every edge in the mesh has two
associated flags for traversal in each direction, which are set when a
polygon is constructed. These flags are tested for every traversal to
avoid multiple constructions of the same polygon. The constructed
polygons are then recursively split until they are convex and con-
sist of no more than five edges. Splitting a polygon is performed
by connecting a pair of close, non-adjacent vertices, avoiding self-
intersections and augmentation of the enclosed region in case of a
non-convex polygon, see Figure 5. The resulting set of polygons is
a convex tessellation of the domain, the base mesh.

3.3 Regular Mesh Refinement

Once we have generated our base mesh, we apply recursive sub-
division using the refinement connectivity of Catmull-Clark subdi-
vision inserting vertices at the centroids of polygons and on their
edges. The first subdivision step generates quadrilaterals that are
regularly refined in the subsequent steps, as illustrated in Figure 6.
Instead of applying stationary subdivision rules to compute the co-
ordinates for vertices on finer levels, we place them on interme-
diate contours. The subdivision process terminates at a resolution
slightly finer than the resolution of the initial rectilinear grid defin-
ing the field function. This mesh hierarchy is then compressed us-
ing wavelets.

Before we can project the new vertices onto intermediate con-
tours, we have to define an isovalue for every vertex. After the first
subdivision step, the resulting vertices are either located on a base
contour or placed in the space between two base contours. In the
latter case, these vertices will be associated with the average of both
corresponding isovalues. For the subsequent levels of regular, recti-
linear refinement, we use the templates illustrated in Figure 7: ver-
tices located on edges are assigned the average isovalue of both in-
cident vertices. Vertices located inside a quadrilateral are assigned

Figure 6: Regular mesh refinement near a saddle point located in
the center of the five-sided patch.

T!Tl m K]dx-’
H-H.--l - l+-!+
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Figure 7: Mapping intermediate isovalues to vertices defined
by subdivision. The first refinement step generates quadrilateral
patches that have either one, two, or three vertices located on a base
contour.

the average of the minimrd and the maximal isovalues of the quadr-
lateral’s four comer vertices.

Every vertex is projected onto a contour with the correct iso-
value. For thk purpose, we use a constrained Newton iteration cou-
pled with Laplacian smoothing of the mesh (moving every vertex
to the centroid of its neighbors). In every step of the Newton it-
eration, a vertex is propagated along the gradient of the field and
subsequently relaxed orthogonal to the gradient by projecting the
Laplacian displacement onto a vector/plane orthogonal to the gra-
dient. Again, the maximal displacement is limited by the distance
J. Due to the topology simplification imposed by the choice of
base contours, some vertices cannot be projected onto the correct
contour, since a nearby component of this contour does not exist.
In this case, the relaxation prevents the mesh from entangling. The
iteration process must terminate after a finite number of steps.

Figure 8: Topology of contour C. changes into topology of C6 at
an intermediate contour. The topology of this intermediate contour
(left) cannot be represented correctly (right).

Besides critical points (points where contour topology changes,
e.g., saddle points and local extrema), the worst-case scenario are
long “headlands” in the scrdar field, where the mesh is either col-
lapsed or stretched along a ridge, see Figure 8. However, the ge-
ometric error of every mesh vertex is bounded by one half of the
sampling distance for base isovalues. The behavior of our meshing



algorithm is shown in Figure 9 and Color Plates (a–f).
From the mesh structure we have constructed, every contour can

be derived immediately by linear interpolation of its closest con-
tours that are explicitly represented in the mesh. Alternatively, we
can use a subdivision scheme, like Catmull-Clmk, to refine the
mesh smoothly. We do not need to store the isovalues associated
with every vertex, since these can be recovered from the base mesh.

Figure 9: Algorithm applied to a simple field with two critical
points (a saddle point and a local minimum). (a) Base contours
extracted from the field, (b) base mesh; (c) final mesh with base
polygons shown in different colors; (d) final mesh with contours
shown. Small regions of the mesh collapse near the critical points,
due to topological error.

3.4 Subdivision-surface Wavelets

Starting with our regularly refined mesh hierarchy composed of ver-
tices located on certain contours, we can efficiently derive any set of
contours using subdivision and linear interpolation. For compres-
sion purposes and level-of-detail rendering, we need a multireso-
hrtion representation of this mesh structure providing these opera-
tions:

s

E

F

c

Subdivision. This operation defines stationary subdivision
rules providing a continuous limit surface when applied re-
cursively. The mesh vertices correspond to control points of
smooth basis functions.

Expanding detail. At every level of refinement, geometric de-
tail can be added to a subdivision surface. This detail is com-
pactly stored in the form of wavelet coefficients and can be
expanded from these.

Fitting. This operation reverses a subdivision step. Based on
all vertices on a fine level, the vertices on the next coarser level
are predicted such that they provide a good approximation to
the fine level when applying subdivision, again.

Compacting detail. The difference between two levels of res-
olution, i.e., the displacement of mesh vertices when applying

F followed by S, is compactly stored in form of wavelet co-
efficients that replace the vertices removed by F.

The modeling paradigm of such a multiresolution representation
is illustrated in Figure 10. These four operations define a wavelet
transform for subdivision surfaces. We have constructed wavelets
for bilinear and bicubic subdivision generalized to arbitrary meshes
with regular refinement [2] and used the bicubic wavelet transform
for multiresohrtion modeling of large-scale isosurfaces [1]. We
summarize the details necessary to implement these transforms in
the remainder of this section.

fme resolution coarse

q$oE&.E&
/J-J co c“

Figure 10: Modeling paradigm of a wavelet transform.
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Flgure 11: Vertex manipulation defined by an s-lift operation.

Our wavelet transforms are computed by a few local vertex
manipulations, called hjiing operations [17], since they can be
used to manipulate the shape of basis functions. Considering a
polygon ship composed of vertices v; and its dyadic refinement
with vertices e~ located on the edges Viv;+l, we define two lifting
operations:

S-lift(a, b):

vi 4- aei–1 + bvi + aej. (3.2)

w-lift (a, b):

ei +- avi + bei + Wi+I. (3.3)

An s-lift operation is illustrated in Figure 11. This operation ma-
nipulates coefficients associated with scalingfinctions representing
the individual levels of resolution, and a w-lift operation manipu-
lates coefficients associated with wavelets representing geometric
detail, i.e., displacements between two levels.

The operations S and E define the reconstruction or synthesis,
which is one step of an inverse wavelet transform. The vertices
v{ represent initially a coarse level of resolution and the vertices
ei contain wavelet coefficients. After a reconstruction step, all
vertices represent the next finer level of resolution. An inverse
wavelet transform is computed by repeated reconstruction starting
with a coarse base polygon. The recons!nrction procedures for
wavelet transforms based on dyadlc refinement of linear and cubic
B-splines are defined as follows:

Linear B-spline wavelet reconstruction:

s–lift(-~, l);

w –lift(~, l).



Cubic B-spline wavelet reconstruction:

s– lift(–~, 1);

w–lift(~, l);

s–lift(~, ~),

The basis functions of the transform corresponding to a wavelet
coefficient are depicted in Figure 12.

-JL-&.-
Figure 12: Linear and cubic B-spline wavelets.

Figure 13: Regularly refined mesh, composed of vertices of types
v (coarse resolution mesh), e, and f (wavelet coefficients).

The operations F and C represent wavelet decomposition or
analysis, which is the inverse of a reconstruction step. The decom-
position formulae for our one-dimensional wavelet constructions
are defined by the inverse of every individual lifting operation
applied in reverse order. Decomposition is defined as follows:

Linear B-spline wavelet decomposition:

w – lift(—~, 1);

s–lift(~, l).

Cubic B-spliie wavelet decomposition:

s– lift(—~, 2);

w – Iift(–+, 1);

s–lift(~, l).

A wavelet transform is computed by repeated decomposition, start-
ing with a fine resolution and terminating at the coarse resolution
of a base polygon.

We now describe the generalization of these lifting operations
to polygon meshes with regular subdivision hierarchy. The refine-
ment of a regular, rectilinear mesh is illustrated in Figure 13. The
vertices corresponding to wavelet coefficients are located on edges
and polygons (faces) of the coarse mesh and are denoted by e, and
f, respectively. On a completely regulm mesh, a lifting operation
is performed by applying the corresponding one-dimensional oper-
ation to the rows and columns, see Figure 14. Instead of updating
the vertices v twice in an s-lift operation, we can change the or-
der of computation such that every vertex is modified only once, as
illustrated in Figure 15.

fewe+ef
Figure 14: A two-dimensional s-lift is computed by applying its
one-dimensionat equivalent to the rows and columns of a regularly
refined grid.

Figure 15: Two-dimensional s-lift operation performed in different
order of vertex updates.

The corresponding two-dimensional lifting operations can be
defined in a notation without indices, where Ev denotes the average
of the vertices of type z that are adjacent to vertex y (or that belong
to the closest stencil around y). For example, V, is the midpoint of
an edge and Vf is tbe centroid of a polygon. Using this notation,
the two-dimensional tiftirrg operations are defined like this:

2D s-lift(a, b):

e + be + 2a~e;
(3.4)

v - b2v — 4a2fv + 4aE..

2D w-lift(a, b) :

e i- be + 2aVe;

f G b2f – 4a2Vf + 4aGf.
(3.5)

Using these index-free definitions, our lifting operations are well
defined for extraordinary vertices (vertices that do not have four in-
cident edges) and for arbitrary polygons in a base mesh. These
two-dimensional lifting operations are used to transform the inner
vertices of a mesh, accordhrg to the decomposition and reconstruc-
tion rules defined above. A two-dimensional scaling function and
a wavelet are depicted in Figure 16. For a correct transformation
of mesh boundties, all boundary vertices are transformed by the
one-dimensional lifting operations, equations (3.2) and (3.3).

Figure 16: Generalized bicubic scaling function and wavelet.

Starting with the finest-level mesh structure constructed in the
previous section, we compute our wavelet decomposition repeat-
edly until we reach the base mesh. The base vertices then represent



a coarse approximation that is obtained by subdivision without ex-
pansion of detail. All vertices that are not base vertices contain
wavelet coefficients that can be used to reconstruct the subdivision
level where these vertices were introduced. For compression pur-
poses, we can quantize the wavelet coefficients and compress them
using, for example, arithmetic coding. We note that all coefficients
have two coordinates, since they represent points and vectors in the
plane.

4 Extensions of our Algorithm

We outtine some modifications to our algorithm that are neces-
sary to represent time-varying contoum and to represent three-
cfimensionalmanifolds.

4.1 Time-varying Contours and Level Sets

Time-vmying contours and level sets, i.e., surfaces evolving over
time like shock waves and material interfaces in fluid simulations,
can be represented and compressed in the same way as contour
sets. A major difference of time-varying curveshufaces is that they
can become self-intersecting over time, whereas contours propagate
locally in only one direction when their isovalues are monotoni-
cally changed. Our algorithm for constructing base meshes can-
not be used for curvesk+mfacesof thk type, since it assumes that
the set of base polygons provides a planar tessellation without self-
intersections.

hr general, it is possible to construct meshes with manifold topol-
ogy approximating time-vaying objects. For thk purpose, we need
to construct a mapping between objects from consecutive base time
steps. For the case of one-dimensional contours, a multiresolu-
tion tiling algorithm is presented by Meyers [10]. This algorithm
constructs polygons connecting contours on different planes corre-
sponding to different times steps. We could use this method for
generating base meshes of manifold topology that could then be
subdivided recursively and iteratively displaced onto contours at in-
termediate time steps. Level set and efficient marching methods for
meshing time-dependent surfaces are described by Sethian [14].

4.2 Wavelet Representation of Three-manifolds

In the case of time-varying surfaces or sets of static isosurfaces,
lattices composed of polyhedral cells need to be constructed, con-
necting two surface components of consecutive base time steps or
filling the space between two adjacent base isosurfaces. These lat-
tices are recursively refined by placing new vertices inside each cell,
on every face, and on every edge, see Figure 17. A generalization
of Catmull-Clwk surfaces to thk type of volumetric subdivision is
provided by McCracken and Joy [9].

Figure 17: Regular subdivision of polyhedra. Subdividing a pyra-
mid results in four hexahedra and one type-4 cell.

Many types of polyhedra, like prisms and tetrahedral, produce
hexahedra after the first subdivision step, allowing for regular re-
finement. Unfortunately, some polyhedra, like pyramids, produce
so-called type-n cells composed of 2n + 2 vertices and 2n faces.

These reproduce two type-n cells when subdivided. To keep the
mesh structure simple, it is desired to avoid type-n cells, except for
the case n = 3 (hexahedra).

Our wavelet transform generalizes nicely to volumetric (and
higher-dimensional) subdivision, since the individual lifting op-
erations can be computed by a sequence of vertex-manipulations
for every type of vertex, analogously to the two-dimensionat case.
When applied to a regukwly gridded domain, these lifting opera-
tions define tensor-product basis functions.

5 Results

We have implemented and tested our algorithm for scalar fields de-
fined on planar domains. As an example data set, we have used
a slice of rich geometric detail taken from a three-dimensional
numerical simulation of a Rayleigh-Taykv instabili~, courtesy of
Lawrence Livermore National Laboratory. The initial slice is de-
fined by 64 x 64 = 4096 byte samples given on a regularly gridded
domain. We extracted nine base contours at uniformly distributed
isovalues, re-sampled at a resolution d of half the length of a grid
edge. We used rzs = 3 levels of subdivision for mesh generation.

Our atgorithm generated a base mesh composed of 656 vertices
and 661 polygons, resulting in 40947 vertices (correspondhrg to
wavelet coefficients) after three levels of subdivision, which cor-
responds to an over-sampling factor of about ten. For our wavelet
representation, we need to store the coordinates of the 656 base ver-
tices (their isovalues can be recorded by grouping vertices of same
contours together into a list), the connectivity of the base mesh, and
the wavelet coefficients, which can be quantized and encoded at
high compression rates. Hence, our over-sampled representation of
contours may use less storage space than the original data set. TMs
becomes crucial when converting large-scale data sets into our rep-
resentation. The computationally expensive part of our algorithm
is the projection of vertices onto contours, which required less than
ten seconds on an SGI 02 workstation using a 180 MHz R5000
processor.

Transform Level No. of coeff. LZ-error L1-error
none 3 40947 0.37 0.06
bicubic 2 10331 0.65 0.29
bicubic 1 2631 1.18 0.72
bicubic o 656 2.61 1.89
bilinear 2 10331 0.63 0.29
bilinea 1 2631 1.00 0.61
bilinea o 656 1.82 1.29

Table 1: Geometric error of represented contours relative to incre-
ment of isovalue at finest subdivision level (index three).

We used our generalized bilinear and bicubic wavelet trans-
forms to compute different levels of resolution, obtained by remov-
ing wavelet coefficients on the highest-resolution levels and recon-
structing the mesh at the finest level of refinement, obtained after
three subdivisions. The reconstructed meshes are depicted in Color
Plates (g–l). The finest-resolution mesh is shown in Color Plate
(f). We rendered these meshes by assigning the same color to all
quadrilaterals located between each pair of adjacent contours at the
finest level. The contours corresponding to levels O and 1 are also
depicted in Figures 1.

The ~eometric errors of all contours that are explicitly repre-
sented in the mesh at finest level are shown in Table 1. These er-
rors represent the difference between the isovalue associated with
a mesh vertex and the real function value of the underlying scalar
field at the vertex location. All errors are relative to the difference
of two adjacent contours represented in the finest mesh. An error



larger than one means that adjacent contours may be intersecting
and the mesh no longer defines a unique parametrization of the do-
main. In the case of lossy compression, this can be avoided by
appropriately choosing a threshold for quantization of wavelet co-
efficients. We note that this problem does not occur in the case of
time-varying contours, where self-intersections over time are natu-
ral.

The geometric error at the finest-resolution mesh is caused by
regions of incorrect topology where vertices could not be projected
onto their corresponding contour. For the majority of vertices, the
geometric error is zero, which explains why the L1-error (the av-
erage of individual errors) is much smaller than the L2-error (the
square-root of the averaged squared errors).

6 Conclusions

Our approach supports the exploration of scatar fields via their
contours. A key issue of our approach is the construction of a
base mesh of manifold topology that is induced by a set of orig-
inally extracted contours. Thk base mesh defines a subdivision
surface/volume from which all intermediate contours can be re-
constructed efficiently. During this subdivision process, geometric
detail is expanded from wavelet coefficients increasing the level of
detail. For efficiently representing very large data sets it will be cru-
cial to select and conshuct a locally optimal set of base contours and
to blend the resulting locat base meshes to a global representation.
A solution to this challenging problem might be the consideration
of topological characteristics of a field function, like critical points
and separatrices, which can be constructed explicitly for scalar and
vector fields [12, 13].
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Color Plate. (a) Slice of trivariate scalar field: (b) base contours; (c) linking base vertices; (d) base ~olwons; (e) uatches
defined by fit~ed mesh; (f) mesh with colored contours; (g–i) bicubic wavel~t reconstructioris using ~0~31, 263’1; ad 656

coefficients, respectively; (j-1) corresponding bilinem wavelet reconstructions.




